On-Enzyme Refolding Permits Small RNA and tRNA Surveillance by the CCA-Adding Enzyme

نویسندگان

  • Claus-D. Kuhn
  • Jeremy E. Wilusz
  • Yuxuan Zheng
  • Peter A. Beal
  • Leemor Joshua-Tor
چکیده

Transcription in eukaryotes produces a number of long noncoding RNAs (lncRNAs). Two of these, MALAT1 and Menβ, generate a tRNA-like small RNA in addition to the mature lncRNA. The stability of these tRNA-like small RNAs and bona fide tRNAs is monitored by the CCA-adding enzyme. Whereas CCA is added to stable tRNAs and tRNA-like transcripts, a second CCA repeat is added to certain unstable transcripts to initiate their degradation. Here, we characterize how these two scenarios are distinguished. Following the first CCA addition cycle, nucleotide binding to the active site triggers a clockwise screw motion, producing torque on the RNA. This ejects stable RNAs, whereas unstable RNAs are refolded while bound to the enzyme and subjected to a second CCA catalytic cycle. Intriguingly, with the CCA-adding enzyme acting as a molecular vise, the RNAs proofread themselves through differential responses to its interrogation between stable and unstable substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfolobus shibatae CCA-adding enzyme forms a tetramer upon binding two tRNA molecules: A scrunching-shuttling model of CCA specificity.

The tRNA CCA-adding enzyme adds CCA stepwise to immature transfer RNA molecules untemplated, but with high specificity. We examined the oligomerization state of the enzyme from Sulfolobus shibatae and its binding to transfer RNA molecules, using various biophysical and biochemical methods including size exclusion chromatography, multi-angle laser light scattering, small-angle X-ray scattering, ...

متن کامل

Molecular mechanisms of template-independent RNA polymerization by tRNA nucleotidyltransferases

The universal 3'-terminal CCA sequence of tRNA is built and/or synthesized by the CCA-adding enzyme, CTP:(ATP) tRNA nucleotidyltransferase. This RNA polymerase has no nucleic acid template, but faithfully synthesizes the defined CCA sequence on the 3'-terminus of tRNA at one time, using CTP and ATP as substrates. The mystery of CCA-addition without a nucleic acid template by unique RNA polymera...

متن کامل

tRNAs marked with CCACCA are targeted for degradation.

The CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase] adds CCA to the 3' ends of transfer RNAs (tRNAs), a critical step in tRNA biogenesis that generates the amino acid attachment site. We found that the CCA-adding enzyme plays a key role in tRNA quality control by selectively marking structurally unstable tRNAs and tRNA-like small RNAs for degradation. Instead of adding CCA to the 3' en...

متن کامل

A model for C74 addition by CCA-adding enzymes: C74 addition, like C75 and A76 addition, does not involve tRNA translocation.

The CCA-adding enzyme adds CCA to the 3'-end of tRNA one nucleotide at a time, using CTP and ATP as substrates. We found previously that tRNA does not rotate or translocate on the enzyme during the addition of C75 and A76. We therefore predicted that the growing 3'-end of tRNA must, upon addition of each nucleotide, refold to reposition the new 3'-hydroxyl equivalently relative to the solitary ...

متن کامل

Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure.

CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase], a template-independent RNA polymerase, adds the defined 'cytidine-cytidine-adenosine' sequence onto the 3' end of tRNA. The archaeal CCA-adding enzyme (class I) and eubacterial/eukaryotic CCA-adding enzyme (class II) show little amino acid sequence homology, but catalyze the same reaction in a defined fashion. Here, we present the crysta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2015